

Review of Global Economic, Finance, and Transformation

A RGEST

Grant Basel Market Bas

Journal homepage: https://ojs.proaksara.com/index.php/rgeft

Strengthening Decision-Making of Financial Institutions through Business Intelligence

Clinton Emmanuella

Department of Business Administration, Delta State University, Abraka, Nigeria

E-mail: hotclinton2003@yahoo.com

ARTICLE INFO

ABSTRACT

Article History

Received : 03.02.2025 Revised : 25.02.2025 Accepted : 22.03.2025

Article Type: Research Article

This study aims to determine the effect of Data Accuracy (DA) on Decision-Making Efficiency (DME), and examine the influence of Data Quality (DQ) on Decision-Making Efficiency (DME) in selected financial institutions in Delta State, Nigeria. The research adopts a quantitative approach, with a sample size of 222 respondents drawn from employees of various financial institutions in the region. The study employs structured questionnaires to gather data, utilizing statistical methods such as correlation and regression analysis to assess the relationships between data accuracy, data quality, and decision-making efficiency. The findings reveal that both Data Accuracy (DA) and Data Quality (DQ) have a significant positive impact on Decision-Making Efficiency (DME) in financial institutions. Specifically, higher levels of data accuracy contribute to more precise and timely decisions, while better data quality ensures more reliable and informed decision-making processes. Based on these findings, the study recommends that financial institutions invest in improving the accuracy and quality of their data systems, including regular data validation and cleaning procedures, to enhance decision-making processes. Training staff in data management and BI tools is also suggested to ensure effective use of data for decision-making. It highlights the importance of robust data systems in improving organizational performance and decision-making efficiency in financial institutions. The research concludes that the integration of high-quality data and accurate information systems is vital for enhancing the overall efficiency of decision-making processes within the financial sector in Nigeria.

Keywords: Data Accuracy, Data Quality, Decision-Making Efficiency, Financial Institutions

1. INTRODUCTION

In the contemporary financial landscape, Business Intelligence (BI) has become indispensable for organizations aiming to enhance decision-making efficiency. BI encompasses a suite of technologies and processes that transform raw data into meaningful insights, thereby facilitating informed strategic decisions. Key components of BI, such as Data Accuracy (DA), Data Quality (DQ), Timeliness and Real-time Analytics (TRA), and User Adoption and Accessibility (UAA), play pivotal roles in shaping Decision-Making Efficiency (DME) within financial institutions. In the context of Delta State, Nigeria, understanding the impact of these BI components on decision-making processes is crucial for financial institutions striving to maintain competitiveness and operational excellence.

Data Accuracy (DA) refers to the correctness and precision of data, ensuring that information reflects the real-world scenarios it represents. Inaccurate data can lead to erroneous analyses, resulting in flawed strategic decisions that may adversely affect an organization's performance. For instance, a study highlighted that poor data quality could lead to suboptimal decision-making in Nigerian financial institutions, emphasizing the necessity for accurate data inputs in BI systems (Rikwentishe et al., 2022). Therefore, maintaining high data accuracy is fundamental to the reliability of BI outputs and the subsequent decisions based on them.

Closely related to data accuracy is Data Quality (DQ), which encompasses various dimensions, including completeness, consistency, and reliability of data. High-quality data ensures that BI systems provide

comprehensive and trustworthy insights, thereby enhancing decision-making processes. Research indicates that financial institutions with robust data quality frameworks are better positioned to make informed decisions, as they can rely on the integrity of their data assets (Bakare et al., 2024). This underscores the importance of implementing stringent data quality measures within BI initiatives to support effective decision-making.

Decision-Making Efficiency (DME) reflects the effectiveness and speed with which organizations can make informed decisions. Efficient decision-making processes enable financial institutions to navigate complex market environments, optimize operations, and achieve strategic objectives. The integration of accurate, high-quality, and timely data through BI systems has been shown to improve DME, as it provides decision-makers with the insights needed to act decisively (Bakare et al., 2024). Therefore, understanding the interplay between BI components and DME is crucial for financial institutions aiming to enhance their decision-making capabilities.

Although the benefits of BI have been widely recognized, effective adoption and implementation within Nigerian financial institutions still face various challenges. Several studies identify gaps in BI implementation, especially in the adoption of advanced analytics technologies and end-user adoption of BI. Rikwentishe et al. (2022) found that several BI tools such as online analytical processing, advanced analytics, data warehousing, and data mining had insignificant relationships with decision-making processes in the Nigeria Custom Service, indicating a gap in the effectiveness of BI implementation.

In addition, research by Bakare et al. (2024) showed that while interactive dashboards and automated reporting can improve real-time decision-making in the financial sector, their adoption is hampered by infrastructure limitations and varying technological readiness across Nigeria's financial institutions. This indicates a disparity between the potential benefits of BI and its effective use in the decision-making process.

Previous studies have also shown that the impact of BI components on decision-making efficiency is not always consistent. Mmeje et al. (2024) found that while data accuracy and quality had a positive influence on operational decision-making, data security and system integration did not show significant effects in the case of MTN Nigeria. Similar findings were revealed by research at Rikwentishe et al. (2022), which stated that although BI tools improve data accuracy and timeliness, their effect on decision-making efficiency in the Nigeria Customs Service is weaker than other sectors. These variations suggest that the relationship between BI components and decision-making efficiency may depend on the type of institution as well as the context in which the BI system is implemented.

Given the inconsistencies in previous research findings, further studies are needed to clarify the relationship between BI components and decision-making efficiency. Therefore, this study aims to analyze the effect of data accuracy (DA) on decision-making efficiency and to examine how data quality (DQ) affects decision-making efficiency in the financial institutions studied. The results of this study are expected to provide greater insight into optimizing the use of BI in Nigerian financial institutions, particularly in Delta State, in order to improve operational performance and competitive advantage.

2. LITERATURE REVIEW

2.1. Data-Driven Decision-Making (DDDM) Theory

DDDM emphasizes the use of empirical data to guide business decisions, reducing reliance on intuition and subjective judgment. Its origins trace back to the mid-20th century, coinciding with the rise of statistical analysis and the increasing availability of data. Irwin D.J. Bross, in 1953, proposed a decision model based on data and statistical principles, distinguishing the real from the symbolic world and laying the groundwork for data-driven approaches in decision-making (Bross, 1953). This approach has evolved with advancements in technology, leading to the development of frameworks like the BADIR model, which structures data analytics into a five-step process: Business Question, Analysis Plan, Data Collection, Insights Derivation, and Recommendations (Adesina et al., 2024). Data-driven decision-making (DDDM) has been identified as a critical enabler for businesses to respond to market shifts and improve operational performance (Patil et al., 2024). It emphasizes the importance of analyzing data for actionable insights, which are critical for achieving competitive advantage in highly volatile markets (Gartner, 2020).

2.2. Integration of the Theories with Business Intelligence and Decision-Making Efficiency

The theories of DDDM, IPT, and CI are intricately linked to business intelligence (BI) components such as Data Accuracy (DA) and Data Quality (DQ). High DA and DQ ensure that the data utilized in decision-making is reliable and relevant, aligning with DDDM's emphasis on empirical data. CI benefits from these BI components by enabling the collection of accurate and timely competitive data, thereby enhancing strategic decision-making.

In the context of financial institutions in Delta State, Nigeria, the application of these theories can significantly impact Decision-Making Efficiency (DME). By leveraging accurate, high-quality, and timely data, institutions can make informed decisions that enhance operational efficiency, customer satisfaction, and competitive positioning. Recent studies have highlighted the importance of data-driven approaches in the financial sector, noting that the rise of data science represents a revolutionary cycle in data-driven decision-making (Pillay, 2021). Financial institutions that integrate BI tools, such as data visualization and real-time reporting systems, achieve higher efficiency in decision-making (Alhawamdeh et al., 2024). Thus, the integration of DDDM, IPT, and CI theories with BI components provides a comprehensive framework for enhancing decision-making processes in financial institutions. This approach not only improves the accuracy and timeliness of decisions but also aligns organizational strategies with the evolving demands of the financial industry.

2.3. Business Intelligence (BI)

Business Intelligence (BI) refers to the technology-driven process of analyzing data to support informed business decisions. It involves collecting, integrating, analyzing, and presenting business information to provide actionable insights. BI tools enable organizations to transform raw data into meaningful information, facilitating strategic planning and operational improvements (Stedman, 2023).

2.4. Data Accuracy (DA)

Data Accuracy (DA) is a critical dimension of data quality, reflecting the extent to which data correctly represents the real-world constructs it describes. Inaccurate data can lead to erroneous analyses and misguided decisions. Ensuring high data accuracy involves implementing rigorous validation processes to detect and correct errors, thereby enhancing the reliability of BI outputs (Collibra, 2021).

2.5. Decision-Making Efficiency (DME)

Decision-Making Efficiency (DME) refers to the effectiveness and speed with which decisions are made within an organization. High DME implies that decisions are not only made quickly but are also well-informed and yield positive outcomes. BI plays a pivotal role in enhancing DME by providing timely and accurate insights, thereby reducing the time required to analyze information and increasing the likelihood of making sound decisions. In the context of financial institutions, improved DME can lead to better risk management, optimized operations, and increased competitiveness in the market (OptimizDBA Team, 2024). Thus, the integration of BI components such as Data Accuracy, Data Quality, Timeliness & Real-time Analytics, and User Adoption & Accessibility is crucial for enhancing Decision-Making Efficiency in financial institutions. By ensuring that data is accurate, high-quality, timely, and accessible, organizations can make informed decisions that drive strategic success and operational excellence.

2.6. Hypothesis Development

Previous research has highlighted the role of various Business Intelligence (BI) components in improving decision-making efficiency (DME) in various industry sectors. Mmeje, Hur-Yagba, and Rauf (2024) found that data accuracy (DA) and data quality (DQ) had a direct positive influence on operational decision-making in the telecommunications industry, while other components such as data security and system integration showed no significant impact. This study confirms that data accuracy and reliability are key factors in improving decision-making efficiency in data-driven organizations.

In addition, research conducted by Al-Okaily et al. (2023) in the financial sector showed that BI, particularly through real-time analytics and data accuracy, contributes significantly to improving decision-making effectiveness. By leveraging BI, organizations can access more accurate and timely information, allowing them to make faster, data-driven decisions. These findings are reinforced by Nithya & Kiruthika (2021), who states that the adoption of BI in the banking industry enables more strategic decision-making,

improves customer experience, and reduces operational costs through more accurate and real-time data access.

While many studies show a positive relationship between BI and decision-making efficiency, there are differences in the influence of individual BI components across different industries and institutions. For example, research by Rikwentishe et al. (2022) found that while BI improved data accuracy and timeliness, the impact of these components was not as strong in the context of the Nigeria Customs Service (NCS). This suggests that the effectiveness of BI components in improving decision-making efficiency may vary depending on the industry sector and context of use.

Based on these findings, this study aims to re-examine the relationship between data accuracy (DA) and data quality (DQ) with decision-making efficiency (DME) in the context of financial institutions in Delta State, Nigeria. Taking into account the differences in findings across sectors, this study proposes the following hypotheses to be empirically tested:

H01: Data Accuracy (DA) has no significant effect on Decision-Making Efficiency (DME) in selected financial institutions in Delta State, Nigeria.

H02: Data Quality (DQ) does not significantly influence Decision-Making Efficiency (DME) in selected financial institutions in Delta State, Nigeria.

3. RESEARCH METHODS

3.1. Tools and Methods

This study adopted a comprehensive research methodology to examine the relationship between Business Intelligence (BI) components and Decision-Making Efficiency (DME) within selected financial institutions in Delta State, Nigeria. The methodology included a detailed explanation of the research design, population, sample, data collection methods, and techniques for analysis.

3.2. Research Design

The research design for this study was a quantitative correlational design, aimed at investigating the relationship between BI components and decision-making efficiency. This design was suitable for identifying patterns, examining the strength of relationships, and making predictions regarding the variables in the study. A cross-sectional approach was used to collect data at a single point in time, enabling a snapshot of the current practices within the selected financial institutions. The correlational design allowed for assessing the impact of BI components—data accuracy, data quality, timeliness & real-time analytics, and user adoption & accessibility—on decision-making efficiency in these institutions.

3.3. Population of the Study

The population of this study included employees in the selected financial institutions within Delta State, Nigeria, specifically targeting managers, data analysts, and IT personnel who were directly involved in the implementation and use of business intelligence systems. The total population size across the ten selected financial institutions was estimated to be 500 individuals. The table 1, below presents the breakdown of the population by financial institution and branch location.

Table 1. Population of the Study

Financial Institution	Branch Location	Estimated Population
First Bank Nigeria Plc	Asaba Branch	50
Access Bank Plc	Warri Branch	50
Zenith Bank Plc	Sapele Branch	50
Guaranty Trust Bank Plc	Ughelli Branch	50
United Bank for Africa Plc	Asaba Branch	50
Fidelity Bank Plc	Warri Branch	50
Union Bank of Nigeria Plc	Sapele Branch	50
Sterling Bank Plc	Agbor Branch	50
Wema Bank Plc	Ughelli Branch	50
Polaris Bank Plc	Asaba Branch	50
Total	N/A	500

Source: Research Population Estimation, 2024-2025

The total estimated population size across these institutions was 500, and this served as the population for this study. This table ensures that the population size aligns with the breakdown of the financial institutions and their branch locations across Delta State, Nigeria.

3.4. Sample and Sample Size Determination

To determine the sample size, Taro Yamane's formula was employed, which **is** widely used in social sciences for calculating sample sizes in a population. The formula was:

 $n = N/1 + N(e)^2$

Where:

n = sample size

N = population size (500 in this case)

e = margin of error (5% or 0.05)

Substituting the values:

 $n = 500/1 + 500(0.05)^2$

=500/1+500(0.0025)

= 500/2.25≈222

Thus, the sample size for this study was 222 respondents, which was drawn from the 10 selected financial institutions.

3.5. Sampling Techniques

This study adopted a stratified random sampling technique. The sample was stratified into three distinct categories: managers, data analysts, and IT personnel. Stratified sampling was chosen because it ensured that each key group involved in BI adoption and decision-making processes was adequately represented. Once the strata were defined, respondents were randomly selected from each group within the institutions, ensuring that the sample reflected the diversity and roles involved in BI implementation.

3.6. Method of Data Collection

The data in this study was collected through primary and secondary sources. Primary data was obtained through a structured questionnaire designed to capture the perspectives and experiences of managers, data analysts, and IT personnel regarding BI adoption and its impact on decision-making efficiency. The questionnaire used a 5-point Likert scale to measure the extent to which each BI component affects the decision-making process. Meanwhile, secondary data was obtained from company reports as well as industry publications relating to BI systems and their implementation in Nigerian financial institutions. These secondary data sources were used to validate the primary data as well as provide additional evidence regarding BI adoption and its impact on decision-making efficiency.

3.7. Research Instruments

The main research instrument used in this study was a structured questionnaire specifically designed to achieve the research objectives. This questionnaire consists of several sections, namely: Section A that includes respondents' demographic information, such as age, gender, position, and work experience; Section B that contains questions related to Business Intelligence (BI) components, such as data accuracy, data quality, timeliness and real-time analytics, and user adoption and accessibility, using a Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree); and Section C that focuses on questions regarding decision-making efficiency, also using a Likert scale for measurement. In addition to primary data obtained through questionnaires, this study also relies on secondary data sources that include reports, internal publications, and data from financial institutions. This secondary data is used to validate the primary data as well as provide additional evidence regarding BI adoption and its impact on decision-making efficiency.

3.8. Validity of Research Instruments

To ensure the validity of the research instruments, the questionnaire underwent **a** content validity check. The content validity was assessed by three experts in the fields of business intelligence, banking, and organizational decision-making. They evaluated the relevance and appropriateness of the items in the questionnaire to ensure they aligned with the study's objectives. Adjustments were made based on the feedback provided by these experts, improving the content validity.

3.9. Reliability of Research Instruments

The reliability of the structured questionnaire was determined using Cronbach's Alpha coefficient, a common measure for assessing internal consistency. Cronbach's Alpha values greater than 0.70, were considered acceptable for social science research. A pre-test of the questionnaire was conducted with 30 respondents who were not part of the final sample.

The calculation results show that Data Accuracy has a Cronbach's Alpha value of 0.85, Data Quality is 0.82, and Decision Making Efficiency is 0.86. In general, Cronbach's Alpha values above 0.70 are considered to indicate a good level of reliability, so these results indicate that the instruments used in this study have a high level of internal consistency. Thus, the responses provided by participants can be trusted in describing the real conditions related to the use of BI in decision making in financial institutions. In addition, a high reliability value also indicates that each item in the questionnaire is able to measure the intended concept consistently, thus strengthening the validity of the research results.

3.10. Techniques for Data Analysis

The data collected were analyzed using descriptive and inferential statistics. Descriptive statistics such as mean, standard deviation, and frequency distributions were used to describe the characteristics of the respondents and the data collected on BI components and decision-making efficiency. For inferential analysis, multiple regression analysis was employed to assess the relationship between the independent variables (data accuracy, data quality, timeliness & real-time analytics, and user adoption & accessibility) and the dependent variable (decision-making efficiency). This model allowed the study to determine the relative contribution of each BI component to decision-making efficiency in the selected financial institutions. The regression model was specified as follows:

```
Where:

DME = Decision-Making Efficiency

DA = Data Accuracy

DQ = Data Quality

β0 = Constant
```

 β 1, β 2, = Coefficients for the independent variables

 ϵ = Error term

DME = $\beta_0 + \beta_1 DA + \beta_2 DQ + \epsilon$

3.11. Data Analysis

The data collected from 222 respondents across selected financial institutions in Delta State, Nigeria, were analyzed to assess the impact of business intelligence on strengthening decision-making. Specifically, the study aimed to determine the effects of Data Accuracy (DA) and Data Quality (DQ) on Decision-Making Efficiency (DME) in these financial institutions. Several statistical methods were used to analyze the data, including descriptive statistics, correlation analysis, and regression analysis.

3.12. Descriptive Statistics

The data was summarized using means and standard deviations for the key variables (DA, DQ, and DME). The results showed that most of the respondents acknowledged the importance of accurate and high-quality data in improving decision-making processes. However, variations were observed in the perceived levels of data accuracy and quality across institutions, with some institutions reporting higher data accuracy and quality than others.

4. RESULTS AND DISCUSSION

4.1. Analysis of the Relationship Between Data Accuracy (DA) and Decision-Making Efficiency (DME)

Based on the results of Pearson correlation analysis, it was found that there is a strong positive relationship between Data Accuracy (DA) and Decision-Making Efficiency (DME) with a correlation value of r = 0.74. This value indicates that the higher the level of data accuracy used by financial institutions, the higher the efficiency in decision-making. In other words, institutions that ensure data accuracy tend to be able to make more timely decisions, reduce the risk of errors, and improve their response to market dynamics. Furthermore, the regression analysis results show that Data Accuracy (DA) has a standardized regression coefficient of 0.53, which indicates that DA has a greater influence on decision-making efficiency than Data Quality (DQ). This suggests that in the context of financial institutions in Delta State, Nigeria, data accuracy is a key factor in supporting a more effective decision-making process.

The results of this study are in line with a study conducted by Mmeje, Hur-Yagba, and Rauf (2024), who found that data accuracy is crucial in the Nigerian telecommunications industry because it contributes to increased operational efficiency and faster decision making. In addition, research from Zeal Journals (2021) also supports this finding by stating that data accuracy plays a role in reducing financial risk and improving adaptation to market changes.

With these findings, the first null hypothesis (H_{01}) , which states that "Data Accuracy (DA) has no significant effect on Decision-Making Efficiency (DME) in selected financial institutions in Delta State, Nigeria," is rejected. Instead, the results showed that DA has a significant and positive effect on DME.

4.2. Analysis of the Relationship between Data Quality (DQ) and Decision-Making Efficiency (DME)

In addition to Data Accuracy (DA), this study also found that Data Quality (DQ) has a positive and significant relationship with Decision-Making Efficiency (DME), with a correlation value of r = 0.69. Although this correlation value is slightly lower than DA, this strong relationship suggests that data quality remains an important factor in supporting decision-making efficiency in financial institutions.

Regression analysis shows that Data Quality (DQ) has a standardized regression coefficient of 0.45, indicating that improving data quality also contributes significantly to improving decision-making efficiency, although the effect is slightly smaller than that of DA. High-quality data that is consistent, reliable, and relevant allows financial institutions to analyze financial trends more accurately, manage risks more effectively, and develop better business strategies.

This research is in line with the findings of Rikwentishe et al. (2022), which states that poor data quality can hinder the effectiveness of Business Intelligence (BI) in the financial sector. In addition, Host Africa (2021) also found that inconsistent data is often a major obstacle in BI implementation, which ultimately has a negative impact on decision-making. Therefore, ensuring high data quality is a strategic step for financial institutions in improving decision-making efficiency.

Thus, the second null hypothesis (H_{02}) , which states that "Data Quality (DQ) does not significantly influence Decision-Making Efficiency (DME) in selected financial institutions in Delta State, Nigeria," can also be rejected. The results showed that DQ has a significant influence on DME, although slightly lower than DA.

4.3. Implications of the Findings for Business Intelligence (BI) and Decision Making

The results of this study reinforce the idea that the implementation of Business Intelligence (BI) that prioritizes data accuracy and quality can have a positive impact on decision-making efficiency in financial institutions. Nithya & Kiruthika (2021) confirms that a good BI implementation can improve decision-making efficiency, provided that the data used has a high level of accuracy and quality.

However, the study also underlines that the effectiveness of BI in decision-making depends not only on the accuracy and quality of data, but also on other factors such as system integration, organizational culture, and the level of training of BI users. Rikwentishe et al. (2022) and Mmeje, Hur-Yagba, and Rauf (2024) emphasized that without well-integrated systems and adequate training support, the benefits of BI in decision-making can be suboptimal.

In addition, previous research shows that most studies on the relationship between BI and decision-making efficiency still focus on Nigeria and the Middle East. Therefore, there is still a geographical gap in understanding how BI functions in different economic and regulatory contexts (Agu et al., 2024; Gwani, 2024).

5. CONCLUSIONS

The study concludes that Data Accuracy (DA) and Data Quality (DQ) significantly contribute to Decision-Making Efficiency (DME) in selected financial institutions in Delta State, Nigeria. Both factors were found to positively influence the efficiency of decision-making processes, with data accuracy having a slightly stronger impact. As financial institutions continue to embrace business intelligence tools, ensuring the accuracy and quality of data becomes crucial for improving decision-making and maintaining a competitive advantage in the financial sector.

Financial institutions should invest in sophisticated Business Intelligence systems to improve data accuracy. This can be done by implementing data verification mechanisms, improving data collection processes, and adopting real-time data analysis. Ensuring data accuracy will support better decision-making, reduce the risk of errors, and improve overall operational efficiency. In addition to improving accuracy, financial institutions also need to strengthen data quality management practices. Steps that can be taken include ensuring that the data used is complete, consistent, timely and relevant. Regular data cleansing processes, implementation of a data governance framework, and training for employees on best practices in data management can significantly improve data quality. High-quality data will contribute to more effective analysis, better risk management, and more strategic decision-making.

6. REFERENCES

- Adesina, A., Iyelolu, T., & Paul, P. (2024). Leveraging predictive analytics for strategic decision-making: Enhancing business performance through data-driven insights. *World Journal of Advanced Research and Reviews*, 22, 1927–1934. https://doi.org/10.30574/wjarr.2024.22.3.1961
- Agu, E. E., Obiki-Osafiele, A. N., & Chiekezie, N. R. (2024). Enhancing decision-making processes in financial institutions through business analytics tools and techniques. *World Journal of Engineering and Technology Research*, 3(01), 19–28.
- Al-Okaily, A., Al-Okaily, M., Teoh, A. P., & Al-Debei, M. M. (2023). An empirical study on data warehouse systems effectiveness: the case of Jordanian banks in the business intelligence era. *EuroMed Journal of Business*, 18(4), 489–510.
- Alhawamdeh, H., Alkhawaldeh, B. Y., Zraqat, O., & Alhawamdeh, A. M. (2024). Leveraging Business Intelligence in Organizational Innovation: A Leadership Perspective in Commercial Banks. *International Journal of Academic Research in Accounting, Finance and Management Sciences*, 14(1), 295–309.
- Bakare, O. A., Achumie, G. O., & Okeke, N. I. (2024). Real-Time Decision-Making in Financial Services: The

- Role of Interactive Dashboards and Automated Reporting. *International Journal of Engineering Research and Development*, 20(11).
- Bross, I. D. J. (1953). Design for decision. Macmillan.
- Collibra. (2021). *The 6 data quality dimensions with examples*. Collibra. https://www.collibra.com/blog/the-6-dimensions-of-data-quality
- Gartner. (2020). Data-Driven Decision Making Using the Assumption-to-Knowledge Ratio (Bose). Gartner Research.
- Gwani, M. (2024). *Big Data Analytics and its Role in Decision-Making in Nigeria*. Host Africa. https://www.hostafrica.ng/blog/technology/big-data-analytics-its-role-in-decision-making/
- Mmeje, D. U., Hur-Yagba, A. A., & Rauf, R. I. (2024). Leveraging Business Intelligence for Strategic Decision Making: Analyzing Its Impact on MTN Nigeria's Organizational Performance. *Journal of Human Resource and Sustainability Studies*, 12(4), 780–802. https://doi.org/jhrss.2024.124041
- Nithya, N., & Kiruthika, R. (2021). Impact of Business Intelligence Adoption on performance of banks: a conceptual framework. *Journal of Ambient Intelligence and Humanized Computing*, 12(2), 3139–3150.
- OptimizDBA Team. (2024). *Unlocking the Power of Data: Key Strategies for Enhancing Business Intelligence and Analytics*. OptimizBDA. https://optimizdba.com/unlocking-the-power-of-data-key-strategies-for-enhancing-business-intelligence-and-analytics/
- Patil, T. A., Bongale, A., Shukla, M. K., & Kumar, S. (2024). Data-Driven Decision-Making: An Automated Approach for Manufacturing Companies in E-Commerce. 2024 4th Asian Conference on Innovation in Technology (ASIANCON), 1–5.
- Pillay, K., & Van der Merwe, A. (2021). Big data driven decision making model: a case of the South African banking sector. *South African Computer Journal*, 33(2), 55–71.
- Rikwentishe, R., Jato, M., & Paul, V. (2022). Effect of Business Intelligence on Organizational Decision Making Process in Nigeria Custom Service. 6, 6–18.
- Stedman, C. (2023). What is business intelligence (BI)? A detailed guide. TechTarget.